Created by Pengxiang Li
2015.9.30
It is easy to calculate the average value of finitely many numbers \(y_{1}\),\(y_{2}\),...,\(y_{n}\): \[ y_{ave}=\frac{y_{1} + y_{2} + \cdots+y_{n}}{n} \]
But how do we compute the average temperature during a day if infinitely many temperature readings are possible?
Figure1 shows the graph of a temperature function T(t).
\[ \frac{f(x_{1}^{*}) + \cdots + f(x_{n}^{*})}{n} \]
\[ \frac{f(x_{1}^{*}) + \cdots + f(x_{n}^{*})}{\frac{b-a}{\Delta x}} = \frac{1}{b-a}[f(x_{1}^{*}\Delta x) + \cdots + f(x_{n}^{*}\Delta x)] \] \[= \frac{1}{b-a}\sum_{i=1}^{n}f(x_{i}^{*})\Delta x \]
\[ \lim_{n \to \infty}\frac{1}{b-a}\sum_{i=1}^{n}f(x_{i}^{*})\Delta x = \frac{1}{b-a}\int_{a}^{b}f(x)dx \]
\[ f_{ave} = \frac{1}{b-a}\int_{a}^{b}f(x)dx \]
\[ \int_{-1}^{2}(1 + x^{2})dx = f(c)[2-(-1)] \] \[1 + c^{2} = 2\] \[c^{2} = 1 \]
\[ \frac{\Delta s}{\Delta t} = \frac{s(t_{2})-s(t_{1})}{t_{2}-t_{1}} \]